AMD Radeon Pro WX Vega M GL vs AMD Radeon R9 390 X2
Comparative analysis of AMD Radeon Pro WX Vega M GL and AMD Radeon R9 390 X2 videocards for all known characteristics in the following categories: Essentials, Technical info, Video outputs and ports, Compatibility, dimensions and requirements, API support, Memory, Technologies. Benchmark videocards performance analysis: PassMark - G2D Mark, PassMark - G3D Mark, CompuBench 1.5 Desktop - T-Rex (Frames/s).
Differences
Reasons to consider the AMD Radeon Pro WX Vega M GL
- Videocard is newer: launch date 2 year(s) 4 month(s) later
- 37.4x more texture fill rate: 80.88 GTexel/s vs 2x 160.0 GTexel / s billion / sec
- A newer manufacturing process allows for a more powerful, yet cooler running videocard: 14 nm vs 28 nm
Launch date | 1 February 2018 vs 3 September 2015 |
Texture fill rate | 80.88 GTexel/s vs 2x 160.0 GTexel / s billion / sec |
Manufacturing process technology | 14 nm vs 28 nm |
Reasons to consider the AMD Radeon R9 390 X2
- Around 7% higher core clock speed: 1000 MHz vs 931 MHz
- 4x more pipelines: 2x 2560 vs 1280
- 4x more maximum memory size: 2x 8 GB vs 4 GB
- 7.7x more memory clock speed: 5400 MHz vs 700 MHz (1400 MHz effective)
Core clock speed | 1000 MHz vs 931 MHz |
Pipelines | 2x 2560 vs 1280 |
Maximum memory size | 2x 8 GB vs 4 GB |
Memory clock speed | 5400 MHz vs 700 MHz (1400 MHz effective) |
Compare benchmarks
GPU 1: AMD Radeon Pro WX Vega M GL
GPU 2: AMD Radeon R9 390 X2
Name | AMD Radeon Pro WX Vega M GL | AMD Radeon R9 390 X2 |
---|---|---|
PassMark - G2D Mark | 405 | |
PassMark - G3D Mark | 4643 | |
CompuBench 1.5 Desktop - T-Rex (Frames/s) | 21.128 |
Compare specifications (specs)
AMD Radeon Pro WX Vega M GL | AMD Radeon R9 390 X2 | |
---|---|---|
Essentials |
||
Architecture | GCN 4.0 | GCN 2.0 |
Code name | Polaris 22 | Grenada |
Launch date | 1 February 2018 | 3 September 2015 |
Place in performance rating | 260 | 257 |
Type | Mobile workstation | Desktop |
Launch price (MSRP) | $1,399 | |
Technical info |
||
Boost clock speed | 1011 MHz | |
Compute performance | 20 | |
Core clock speed | 931 MHz | 1000 MHz |
Manufacturing process technology | 14 nm | 28 nm |
Peak Double Precision (FP64) Performance | 161.8 GFLOPS | |
Peak Half Precision (FP16) Performance | 2.588 TFLOPS | |
Peak Single Precision (FP32) Performance | 2.588 TFLOPS | |
Pipelines | 1280 | 2x 2560 |
Pixel fill rate | 32.35 GPixel/s | |
Texture fill rate | 80.88 GTexel/s | 2x 160.0 GTexel / s billion / sec |
Texture Units | 65 Watt | |
Transistor count | 5000 million | 6,200 million |
Floating-point performance | 2x 5,120 gflops | |
Thermal Design Power (TDP) | 580 Watt | |
Video outputs and ports |
||
Display Connectors | No outputs | 2x DVI, 1x HDMI, 1x DisplayPort |
Compatibility, dimensions and requirements |
||
Interface | IGP | PCIe 3.0 x16 |
Supplementary power connectors | 4x 8-pin | |
API support |
||
DirectX | 12 | 12.0 (12_0) |
OpenCL | 2.0 | |
OpenGL | 4.6 | 4.5 |
Shader Model | 6.3 | |
Vulkan | ||
Memory |
||
High bandwidth memory (HBM) | ||
Maximum RAM amount | 4 GB | 2x 8 GB |
Memory bandwidth | 179.2 GB/s | 2x 345.6 GB / s |
Memory bus width | 1024 bit | 2x 512 Bit |
Memory clock speed | 700 MHz (1400 MHz effective) | 5400 MHz |
Memory type | HBM2 | GDDR5 |
Technologies |
||
Unified Video Decoder (UVD) | ||
Video Code Engine (VCE) |